Structure Reports

Online
ISSN 1600-5368

Fang-Zhong Hu, Min Zhang, Hai-Bin Song, Xiao-Mao Zou and Hua-Zheng Yang*

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin, Weijin Road No. 94, Tianjin, People's Republic of China

Correspondence e-mail:
chshengyao@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.115$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3,6-Bis(4-methoxybenzyloxy)pyridazine

In the crystal structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$, the molecules are linked by a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. The molecule has crystallographic twofold rotation symmetry.

Comment

Derivatives of pyridazine are very interesting because of their varied bioactivities, for example, acaricidal (Fuchs et al., 1977), bactericidal (Douglass, 1977), anti-HIV (Bussolari, \& Panzica, 1999), insecticidal (Ito et al., 1983), antiviral (Galtier et al., 2003), plant-growth regulating (Okamoto et al., 1982) and herbicidal activities (Tsukamoto et al., 2003; Kadotani et al., 2004). In addition, maleic hydrazide, pyrazon and norflurazon are widely used as herbicides. This led us to direct our attention to the synthesis and structure determination of pyridazine derivatives. In a search for novel herbicides, we have synthesized a series of derivatives of pyridazine to study the relationship between their structure and their herbicidal activity. We report here the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The molecule has crystallographic twofold rotation symmetry. The dihedral angle between the benzene and pyridazine rings is 27.37 (8) ${ }^{\circ}$. The $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$ torsion angle is $177.4(1)^{\circ}$ (Table 1).

In the crystal structure, the molecules are linked by a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 2 and Fig. 2).

Experimental

The title compound was synthesized according to the reported procedure of Yang et al. (2002), by refluxing 3,6-difluoropyridazine

Received 27 June 2005
Accepted 4 July 2005
Online 9 July 2005

Figure 1
The structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. The suffix A corresponds to symmetry code (i) in Table 1.
$(0.24 \mathrm{~g}, 2.06 \mathrm{mmol}), 4-m e t h o x y b e n z y l ~ a l c o h o l ~(~ 0.29 \mathrm{~g}, 2.10 \mathrm{mmol})$ and sodium hydroxide ($0.10 \mathrm{~g}, 2.50 \mathrm{mmol}$) in acetonitrile (15 ml) for about 2 h . After cooling, the reaction mixture was poured into water. The precipitate was filtered off and recrystallized from petroleum ether. Single crystals of (I) suitable for X-ray diffraction were obtained after slow evaporation of the mother liquor.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \\
& M_{r}=352.38 \\
& \text { Monoclinic, } C 2 / c \\
& a=33.126(9) \AA \\
& b=5.7499(15) \AA \\
& c=9.258(3) \AA \\
& \beta=9.0305(5)^{\circ} \\
& V=1763.4(9) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.958, T_{\text {max }}=0.981$
4724 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.115$
$S=1.02$
1801 reflections
120 parameters
H -atom parameters constrained

$$
D_{x}=1.327 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1236 reflections
$\theta=3.6-24.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, colourless
$0.24 \times 0.22 \times 0.18 \mathrm{~mm}$

1801 independent reflections
1051 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-40 \rightarrow 40$
$k=-7 \rightarrow 7$
$l=-5 \rightarrow 11$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0535 P)^{2}\right. \\
& +0.2049 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0041 \text { (7) }
\end{aligned}
$$

Figure 2
$\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded molecules in (I). Intermolecular hydrogen bonds are shown as dashed lines.

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 2$	$1.3070(19)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.4356(19)$
$\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.377(3)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.3741(19)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.350(2)$	$\mathrm{O} 2-\mathrm{C} 10$	$1.415(2)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3$	$117.92(12)$		
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$-177.40(13)$		
Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.			

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.93	2.60	$3.348(2)$	138

Symmetry code: (ii) $x, y-1, z$.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20302004) and the Doctors' Special Foundation of the Higher Education Ministry (grant No. 20020055022).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bussolari, J. C. \& Panzica, R. P. (1999). Bioorg. Med. Chem. 7, $2373-2379$.
Douglass, M. L. (1977). US Patent 3966928.
Fuchs, R. A., Maurer, F., Riebel, H. J., Schroeder, R., Hammann, I., Behrenz, W. \& Homeyer, B. (1977). Ger. Offen. 2537353.

organic papers

Galtier, C., Mavel, S., Snoeck, R., Andrei, G., Pannecouque, C., Witvrouw, M., Balzarini, J., De C. E. \& Gueiffier, A. (2003). Antivir. Chem. Chemother. 14, 177-182.
Ito, T., Tanaka,Y., Udagawa, T. \& Nitanai, K. (1983). Nippon Nogei Kagaku Kaishi, 57, 873-879. (In Japanese.)
Kadotani, J., Sasai, K., Nakashima, A. \& Tsukamoto, Y. (2004). Jpn. Patent 2004262934.

Okamoto, T., Isogai, Y., Shudo, K. \& Takahashi, S. (1982). Eur. Patent 52668.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tsukamoto, Y., Komai, H., Kadotani, J., Koi, K., Mio, S. \& Takeshiba, H. (2003). WO Patent 2003016286.

Yang H.-Z., Wang X., Hu F.-Z. \& Yang X.-F. (2002). Chem. J. Chin. Univ. 23, 2261-2263.

